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Abstract

Gut microbial communities (microbiomes) profoundly shape the ecology and 
evolution of multicellular life. Interactions between host and microbiome appear to be 
reciprocal, and ecological theory is now being applied to better understand how hosts 
and their microbiome influence each other. However, some ecological processes that 
underlie reciprocal host-microbiome interactions may be obscured by the current 
convention of highly-controlled transplantation experiments. Although these approaches
have yielded invaluable insights, there is a need for a broader array of approaches to 
fully understand host-microbiome reciprocity. Using a directed review, we surveyed the 
breadth of ecological reality in the current literature on gut microbiome transplants with 
non-human recipients. For 55 studies, we categorized 9 key experimental conditions 
that impact the ecological reality (EcoReality) of the transplant, including host taxon 
match and donor environment. Using these categories, we rated the EcoReality of each 
transplant. Encouragingly, the breadth of EcoReality has increased over time, but some 
components of EcoReality are still relatively unexplored, including recipient host 
environment and microbiome state. The conceptual framework we develop here maps 
the landscape of possible EcoReality to highlight where fundamental ecological 
processes can be considered in future transplant experiments.

A Quest for Ecological Reality

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T.S. Eliot - Little Gidding (1) 

Far from passive passengers, resident microbial communities (microbiomes) are
integral to the basic biological functioning of multicellular life. This revelation, ushered in
by  advances  in  sequencing  and  computing  technology,  is  grounded  in  a  growing
understanding  that  microbiomes  profoundly  shape  their  host’s  biology,  influencing
factors such as immunity (2), adiposity (3), thermogenesis (4), hormonal regulation (5),
physiological  development  (6),  memory  (7),  and  behaviour  (8).  To  date,  highly-
controlled experiments with laboratory rodent microbiomes have provided foundational
and  indispensable  knowledge  on  host-microbiome  interactions.  Furthermore,  these
initial  experiments  have  set  the  stage  for  integrative  contributions  by  comparative
animal physiologists, ecologists, and evolutionary biologists to fill knowledge gaps in our
understanding of host-microbiome evolution and the interactions which underlay these
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partnerships (9).

Recently, researchers have started to appreciate the intertwining nature of host-
microbiome interactions. Evidence is mounting that hosts can shape the composition of
their  microbiome  community  (10),  and  that  microbiomes  can  influence  their  host’s
behaviour (8) and physiology (5). Based on differing cases of how host and microbiome
might interact, Foster et al. (11) proposed four distinct models: 1) ‘host control’, in which
the host unilaterally governs the composition of its microbiome; 2) ‘symbiont control’, in
which the microbiome shapes the host phenotype; 3) ‘open ecosystem’, in which the
host and microbiome do not interact; and 4) ‘ecosystem on a leash’, in which the host
influences the microbiome by selecting upon microbial function rather than for specific
microbial taxa. These connections can be so intimate that some researchers  (12,13)
proposed that a host and its associated microorganisms are a single biological entity—
termed  the  ‘holobiont’—on  which  selection  acts,  challenging  notions  of  organismal
individuality.  Using  this  holobiont  perspective,  Alberdi  et  al.  (14) posited  that  the
microbial component of the holobiont, with its greater mutability compared to the host
genome,  may  be  an  important  mechanism  facilitating  host  adaptation  to  rapid
environmental change. Therefore, understanding the interplay between the host and the
microbiome is crucial for addressing both fundamental and applied questions about the
microbiome.

Host-microbiome  interactions  are  shaped  by  ecological  and  evolutionary
processes  (15,16).  Because  host-microbiome  interactions  are  potentially  reciprocal,
these processes act on three levels: the assembly and dynamics of the microbiome, the
influence of the host on the microbiome, and the influence of the microbiome on the
host. Microbiome assembly is governed by a variety of factors including environmental
filtering, priority effects, random sampling, and dispersal limitation (16,17). The within-
microbiome  community  dynamics  are  influenced  by  new  invasions,  competition,
mutualisms,  and  other  interactions  (15).  A  host’s  actions  can  also  shape  their
associated microbiomes. For example, the host’s social behaviour can impact microbial
dispersal  (18). Conversely, the dynamics of the microbiome can impact the host; the
change  in  microbiome  community  composition  leading  to  Clostridium  difficile
colonization  and  pathogenicity  is  a  classic  example  in  humans  (19).  Evolutionary
processes also occur in tandem with all the ecological processes mentioned previously
because of the short timescales associated with microbial turnover relative to microbial
evolutionary  rates  (17).  Consequently,  considering  the  ecological  processes  that
underlie  host-microbiome  interactions  is  critical  for  making  sense  of  the  reciprocity
between the host and its microbiome. 

The  most  convincing  evidence  for  host-microbiome  interactions  has  been
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gleaned  through  microbiome  transplantation  studies.  In  these  studies,  researchers
experimentally  translocate  microbial  species  or  communities  from  donor  hosts  or
external  substrates  to  recipient  hosts.  Highly-controlled  transplantation  studies  have
been and will  continue to be invaluable to experimentally probe the host-microbiome
relationship.  However,  there  is  a  trade-off:  highly-controlled  experiments  isolate
mechanisms  of  interest,  but  they  cannot  simultaneously  capture  the  full  suite  of
ecological processes (drift, dispersal, competition, etc.) that influence reciprocal host-
microbiome interactions in nature. For example, the use of germ-free recipients may
preclude  competition  between  introduced  and  resident  microbes  (20),  and  isolated
laboratory conditions may limit the potential for microbial dispersal from influencing the
composition  of  the  resulting  microbiome  (21).  How researchers  weigh this  trade-off
depends on the research question of interest. If a researcher’s goal is to understand the
effect of specific microbes on host physiology, or to develop applications for human
health  and  domestic  animal  production,  controlled  experimental  conditions  are
preferred. In contrast, when examining the role and consequences of reciprocal host-
microbiome interactions in ecological  and evolutionary contexts (e.g.,  fitness effects,
intergenerational  microbial  transmission,  speciation,  species  persistence,  etc.),
ecological complexity needs to be considered (22). Therefore, a comparison of highly-
controlled transplants and ecologically realistic (which we term EcoReal, see Box 1 for a
full  definition)  transplants  that  match  what  the  host  plus  its  microbiome  would
experience in a wild ecosystem is required. The trade-offs of laboratory approaches and
the need for comparison to studies that use ecologically realistic conditions have long
been recognized by comparative animal physiologists  (23), though to date there does
not seem to have been a similar recognition in microbiome research. Specifically, the
breadth  of  EcoReality  in  microbiome  transplant  studies  has  not  been  examined,
meaning such an evaluation remains an exciting potential avenue for future work.

Here,  we probe the current  EcoReality of  microbiome transplantation studies.
Our work here is not unlike Hanage’s (24) questioning of the reality and applicability of
biomedical microbiome studies. By taking advantage of the recent explosion of studies
conducting  microbiome  transplants,  we  evaluated  whether  the  current  microbiome
transplant  literature  limits  opportunities  for  ecological  processes  to  influence  study
outcomes. We investigated two key questions: 1) how EcoReal are the experimental
conditions in the current microbiome transplant literature? and 2) does the literature
currently cover the full potential range of EcoReality? Using long-established ecological
concepts,  we  categorized  microbiome  transplantations  into  different  experimental
conditions which can impact  the EcoReality  of  the transplant (Figure 1 and Box 2).
Using this framework, we scored the EcoReality of microbiome transplant studies that
used non-human recipients.  We show that,  overall,  the breadth of EcoReality of the
present microbiome transplant literature has increased over time. However, EcoReality
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has been constrained by hosts bred and kept in lab conditions, and with transplants into
germ-free recipient hosts. Importantly, we provide a conceptual framework, illustrated in
Figure 1, to help broaden the range of EcoReality  in transplant experiments and to
facilitate comparisons between transplants of varying EcoReality.

Figure 1: Conceptual framework of all the experimental conditions in a microbial
transplant where EcoReality can vary. See Box 2 for explanations for each experimental
condition.

Box 1. Key terms and definitions

Term Definition 

Transplant 
Instance

A transplant of a microbial strain or community from 
its native host or substrate to a different host 
population. A given study can involve multiple 
transplant instances, which are delineated based on
non-substitutability of host populations or of 
transplant parameters.

Experimental 
Conditions

A decision or step in a transplant instance where 
there is the potential for variation in ecological 
reality. 

Level of 
EcoReality 

The degree to which an experimental condition 
matches the conditions that a host-microbiome 
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interaction would experience in a wild ecosystem. 
Each experimental condition possesses its own 
intrinsic EcoReality. Each transplant instance can 
also be assigned an EcoReality score.

Box 2. Ecological reasoning for each experimental conditions within a transplant

Experimental 
condition

Reasoning
Ecological theory + application to microbiome

Taxon Match Organisms can become locally adapted (25). Local adaptation of
a microbial species to a given host may mean it is not adapted 
to hetero-specific hosts and will perform poorly after 
transplantation (26).

Donor & Recipient 
Environment

During community assembly, the local environment acts as a 
filter, incorporating species from a wider species pool (21). From
the microbiome’s perspective, the host’s physiology and the 
external environment are one intertwined environment. 
Therefore, the external environment can affect microbiome 
dynamics in two ways: indirectly through impacting the host 
physiology (27), and directly through the wider microbial species
pool that the host and its microbiome has access to.

Donor & Recipient 
Physiology

The local environment acts as a filter in community assembly 
(21). For this experimental condition, we define physiology as 
physiological states that would occur regardless of the external 
environmental context (e.g. gene knock-out, disease-state). We 
differentiate intrinsic physiology from mutable host physiological 
responses to the external environmental context. Although these
indirect environmental effects acting through host physiology are
relevant (27), they are captured by the ‘Environment’ 
experimental condition. A host’s physiology is the de facto 
environment of inhabitant microbes, and changes or 
dysregulation in the host may disrupt associations between host 
and the microbes that persist under homeostatic physiological 
conditions. 

Transplanted 
Microbiome

The interactions within an invading community, including 
predation or mutualism, can impact whether colonisation is 
successful or not (20). Thus, a full community microbiome 
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transplantation may differ significantly from the transplantation of
a single microbe monoculture at artificially high densities.

Transplant Method Species have different dispersal abilities (27) and local 
environments filter species from the wider species pool (28). 
Active transplantations may circumvent differing dispersal 
abilities of microbial species and may undermine host filtering of 
the microbial community. Furthermore, active transplant 
methods can stress the host thereby changing host physiology 
and disrupting endogenous microbial communities (29).

Recipient Pre-
transplant 
Microbiome

High species diversity in a community is predicted to reduce 
niche opportunities and to increase invasion resistance (20). 
Germ-free or antibiotic perturbed recipients are likely to have 
lower invasion resistance than recipients with intact 
microbiomes.

Housing conditions Dispersal between patches is an integral ecological process 
which can maintain stable populations or can rescue extirpated 
populations (21,30). Recipient host cohabitation allows for 
further transmissions of the microbiome.

 Lay of the land

Literature Search
We conducted a directed review of the existing literature on gut microbiome 

transplants, finishing on October 26th 2018. We conducted our literature search in three
stages. First, to gauge the extent of the current literature, we did a preliminary search of
gut microbiome transplant studies using both Google Scholar and Web of Science 
(University of Guelph subscription). Based on this preliminary search, we conducted a 
more methodical search using both Google Scholar and Web of Science. Search terms 
can be found in the Supporting Information (SI). We then sought additional publications 
through searching the citations of papers already collected using the Web of Science 
citations tool. We retained only those studies that conducted at least one gut 
microbiome transplant into a non-human recipient organism. To ensure our findings 
were generalizable to ecological and evolutionary frameworks across a broad range of 
taxa and ecosystems, we excluded studies focused on a single human disease, C. 
difficile. 
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Literature Evaluation
For each study that met our criteria, we determined the number of transplant 

instances, which we defined as the transfer of a microbial strain or community from its 
native host or substrate to a different host population (see Box 1). We used transplant 
instances as our unit of focus because many studies contained multiple transplant 
instances which sometimes differed substantially in EcoReality (e.g. Seedorf et al. (31)).
For studies that had sequential transplants (i.e., transplant from donor to a first 
recipient, which then was the donor for a second recipient, e.g. Seedorf et al. (31)), we 
used only the first phase of the transplant experiment. 

We identified nine key experimental conditions in a transplant where variation in 
EcoReality might substantially affect the outcome of the experiment: host taxon match, 
donor environment, donor physiology, transplanted microbiome, transplant method, 
recipient pre-transplant microbiome, recipient environment, recipient physiology, and 
recipient housing conditions (see Figure 1 & Box 2). Each experimental condition was 
given an ordinal data scale (see SI Table S1) based on the range of observed and 
possible levels for that condition, with one always representing the lowest level of 
EcoReality. Our goal was to maintain similar resolution for each highly dimensional 
experimental condition within our framework. For example, Taxon Match could have 
included more levels to capture phylogenetic distance, geographic distance, and 
feeding relationships between host and recipient (32) . However given the variation in 
scale, generalization across host taxa would have then been difficult. The levels in each
experimental condition were based on likely conditions found in the wild. For example, 
with respect to the Transplanted Microbiome experimental condition, a single bacterial 
strain at high densities entering a host in the wild is less likely than invasion by mixed 
communities. For each transplant instance, we characterized the level of EcoReality in 
each of the 9 experimental conditions. To ensure consistent evaluation methods, 
EcoReality scores for each transplant instance were determined independently by two 
co-authors (separate pairs of co-authors randomized per paper). The co-author pairs 
then compared their scores and agreed upon the final transplant EcoReality scores. 

To determine the overall standardized EcoReality score of a transplant instance, 
we divided each score by its corresponding maximum potential EcoReality score and 
then added the scaled scores for each experimental condition. Thus all experimental 
conditions were equally weighted in the overall calculation of standardized EcoReality. 

We separated lab rodents from other animals in our results for each experimental
condition because the ecology, physiology and genetics of lab-reared, inbred rodent 
models are heavily modified from wild-type rodents and other wild animals in ways that 
may affect our understanding of reciprocal host-microbiome interactions (for example 
Newman et al. (23) and Walter et al. (33)).
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Literature EcoReality patterns
Our literature search returned 55 articles that met our criteria for inclusion. These

articles ranged from having one to 13 transplant instances with an average of 2.91 
transplant instances per article and a total of 160 from all articles. There was a clear 
shift over time in the number of articles using microbiome transplants. Notably, there 
were 20 articles in the first 10 years of our search period in comparison to almost 40 
articles during 2015-2018 (SI Figure 1). This increase coincided with a switch from 
mainly lab rodent studies to a more diverse group of donor hosts (Figure 2A, around 
2013), and later also to more diverse recipient hosts (Figure 2B, around 2016).

Figure 2: Number of transplant instances over time where the donor or recipient animal 
was either a lab rodent (mouse or rat) or another animal.

The transplant conditions Donor and Recipient Physiology had the highest 
EcoReality with average scores of 1.8 out of 2 (Figure 3C & H). Taxon match (score 1.6 
out of 2, Figure 3A), transplanted microbiome (score 2.5 out of 3, Figure 3D), transplant 
method (score 1.7 out of 2, Figure 3E), and housing condition (score 1.5 out of 2, Figure
3I) were moderately EcoReal. Donor environment (score 2.4 out of 5, Figure 3B), 
recipient environment (score 1.6 out of 5, Figure 3G), and recipient microbiome (score 
1.8 out of 3, Figure 3F) had the lowest EcoReality. Breaking EcoReality into recipient 
lab rodents and other animals, we see that active transplant methods (score of 1)  were 
used more for lab rodents, and passive transplant methods (score of 2) were used more
for other animals (Figure 3E). Interestingly, there were fewer transplants with germ-free 
recipient lab rodents than germ-free recipient other animals (score of 1) (Figure 3F). 
This pattern was driven by bees (19 out of 85 transplant instances from five articles) 
and zebrafish (14 out of 85 transplant instances from two articles). Overall, most 
transplants were performed with matching (score of 2, Figure 3A) wild-type, non-
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diseased donor and recipient hosts (score of 2, Figures 3C & H) using passive 
transplant methods (score of 2, Figure 3E) of whole microbial communities (score of 3, 
Figure 3D) and with a mixture of individual (score of 1, Figure 3I) and cohousing (score 
of 2, Figure 3I) of recipient hosts. However, transplants were mostly in sterile or normal 
lab conditions (score of 1 & 2, Figures 3B & G) with germ-free recipient hosts (score of 
1, Figure 3F).

Figure 3: Number of transplant instances in each experimental condition, separated into
whether the recipient animal was a lab rodent or another animal. The X-axis is the level 
of EcoReality, with 1 always the lowest EcoReality. The levels are explained in Table S1
of our Supporting Information.

Although the maximal EcoReality score increased, increasing the breadth of 
EcoReality studied, the maximal EcoReality score was still below the theoretical 
maximum standardized EcoReality score of 9 possible outlined in our framework (Figure
4).
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Figure 4:  Standardized EcoReality score for each transplant instance. The grey area 
identifies the zone of EcoReality that has been studied in the literature, and the “Here 
be Dragons” area is the unexplored zone of EcoReality that is bound at the top by the 
theoretical maximum standardized EcoReality score of 9.

Here Be Dragons!
   
The burgeoning field of microbiome research is integrating the traditionally 

disparate disciplines of ecology, evolution, and physiology, which examine distinct but 
interrelated processes at different scales. Yet, these interrelated processes across 
scales are inherent in host-microbiome relationships (e.g. Stothart et al. (34)), and thus 
further integration of ecology, evolution, and physiology with microbiology will be crucial 
for unlocking important insights about the interactions between hosts and their 
microbiome. As microbiome research expands further to include ecological processes 
that are well established in traditional ecosystems, studies that can capture these 
processes will be necessary. Here, we expand on the insights from foundational highly-
controlled experiments that identified key mechanisms in host-microbiome interactions. 
We surveyed the state of the microbiome transplant literature and identified gaps in how
well ecological processes are captured in transplants, what we term as ecological 
reality, (i.e., EcoReality, see Box 1). Our results are promising; the breadth of 
EcoReality is increasing over time in transplant experiments (Figure 4), but there are 
still some key gaps in the types of studies conducted on host-microbiome interactions 
(Figure 3). We suggest that a critical step in understanding reciprocal host-microbiome 
interactions includes explicitly designing a broader array of studies that can evaluate the
role of various ecological processes that are known to shape traditional ecological 
systems.
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Our evaluation of the microbiome transplantation literature revealed broadening 
EcoReality in experimental procedures. Lately, there has been a sharp increase in 
taxonomic diversity of both donor and recipient hosts (Figure 2). Transplants often used 
passive transplantation methods with wild-type non-diseased donors as well as a 
mixture of individual and cohabitation housing conditions (Figure 3). Finally, the 
maximal EcoReality score of microbiome transplant studies has increased over time 
(Figure 4). These results are encouraging because they suggest that researchers are 
building on the initial flurry of highly-controlled transplant experiments and designing 
diverse studies that differ in their degree of EcoReality in several of the categories we 
examined. Continuing to broaden EcoReality will be essential for understanding the 
ecological and evolutionary processes at work in reciprocal host-microbiome 
interactions.

However, our results show that the current literature lacks EcoReality in two key 
areas: host environment and the state of the recipient microbiome (Figure 3). Although 
the environment of the donor hosts was on average more EcoReal than the 
environment of the recipient hosts, the EcoReality of the donor and recipient host’s 
environments was generally low. Most studies that we evaluated used laboratory 
settings that exclude the chance for hosts to encounter the broader microbial species 
pool in the environment (18,21). Laboratory conditions can also either increase or 
decrease conspecific interactions relative to what would be observed in nature, thus 
affecting the dispersal of microbes between hosts (18). Furthermore, laboratory 
conditions may be obscuring feedbacks between the host and its microbiome that can 
impact diet and habitat choice (18). The second key area lacking EcoReality is the state
of the recipient microbiome where most recipient hosts were germ-free. Although some 
animals naturally start out with germ-free gastrointestinal tracts (e.g., newly eclosed 
worker bees (35)) or do not have a resident microbiome (36), most animal species host 
substantial microbial communities (37). Germ-free gastrointestinal tracts may lack key 
biotic processes such as predation, competition, and facilitation, which are important 
filters in classic ecological communities that act to mediate incoming species (20,38).  
Overall, neglecting natural environments and intact recipient microbiomes risks 
constraining the fundamental processes that impact reciprocal host-microbiome 
interactions. 

Consequently, we advocate for more breadth in EcoReality in microbiome 
transplant experiments. This breadth includes highly-controlled laboratory transplants, 
which offer critical points of comparison, and provide a focused understanding of 
particular mechanisms. The wider breadth of EcoReality for which we are advocating for
requires that we venture into the largely untested realm of highly EcoReal experimental 
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conditions (Figure 4), despite the logistical challenges likely associated with wild 
conditions. There are many ways in which we might venture beyond our present 
frontier. For example, using wild-caught animals that are either allowed to roam freely or
are housed in outdoor enclosures, and to use recipient animals with intact microbiomes,
rather than germ-free microbiomes (Figure 3). We also suggest identifying and 
addressing the major phylogenetic gaps in the tree of life for the donor and recipient 
host taxa. Overall, we call for a balance of studies dealing with all permutations of 
EcoReality in each experimental condition. We hope researchers will use and adapt our 
conceptual framework (Figure 1) in their own systems to incorporate EcoReality and, 
where appropriate, consider how constrained EcoReality may impact their conclusions. 
Likewise, we encourage researchers to report the methodological details pertaining to 
each experimental condition we have identified. We hope that our literature evaluation 
and conceptual framework will stimulate new avenues of collaborative research that will 
evaluate the role of ecological processes in host-microbiome interactions.

Our literature evaluation suggests that we may understand only a small subset of
possible reciprocal host-microbiome interactions impacting our ability to assess the 
conservation potential of the microbiome. Because we are presently likely constraining 
fundamental ecological and evolutionary processes, host-microbiome studies may be 
biased towards results that indicate a strong role of the microbiome on the host. Yet 
researchers have already made strong and general assertions about the role of the 
microbiome in the biology of the host. Due to the large effects of the microbiome on its 
host and its mutability, Alberdi et al. (14) argued that the microbiome could act as an 
additional axis of ecological adaptation for hosts. If the microbiome does act as an 
additional axis, conserving microbial diversity and using bioaugmentation tools 
(probiotic therapy and transplantation of microbiomes) would then be critical tools for 
animal conservation (39,40). We caution that experimental protocols that lack 
EcoReality might lead us to overestimate the capacity for microbiome variation to shape
host phenotypes in nature by biasing our understanding of the host-microbiome 
relationship towards models of symbiont control (11). We suspect that a full reckoning of
the spectrum of EcoReality in microbiome transplant studies will uncover more 
examples of the ‘ecosystem on a leash’ model (11), which posits an important but more 
limited reciprocity between the host and the ‘ecosystem’ of the microbiome. These sorts
of nuanced interactions may or may not include the large microbiome effects which 
underpin the ecological adaptation and conservation arguments above. Thus, we may 
not yet have the level of understanding about reciprocal host-microbiome interactions 
that is required to know the role of the microbiome in host adaptation or to confidently 
inform conservation efforts. Moving forward, we assert that a consideration of 
EcoReality is required in the design and interpretation of every study that explores how 
the host-microbiome relationship impacts ecological adaptation.
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Microbiome research has undoubtedly fascinated biologists across disciplines, 
prompting advances in both pure and applied research and raising questions about 
some of the most fundamental ideas in biology (13). Yet, the lay of the land in terms of 
ecological reality of this rapidly growing research area was unexplored. Our objective 
here—to survey the breadth of EcoReality in the microbiome transplant literature and 
identify key areas lacking EcoReality—was not unlike a fact-finding mission expanding 
the map of our understanding of reciprocal host-microbiome interactions. We 
recommend a full, extended journey into the wilds to round out the literature’s coverage 
of the landscape of possible EcoReality. Charting all territories, from highly controlled 
lab studies to free-ranging organisms, is necessary to fully comprehend the interplay 
between microbiomes and their hosts. 
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Search terms used for methodological literature search
 Google scholar

◦ (transplant* AND microbio) (gut OR fecal OR feces OR gastrointestin OR gastro-
intestin* OR faecal OR faeces OR forces OR faecal) -human -patient -"homo 
sapiens" -man -woman -child*

 Web of Science
◦ ((TOPIC:(transplant) AND TOPIC: (microbio))AND (TOPIC: (((((((gut OR 

fecal) OR feces) OR gastrointestin) OR gastro-intestin) OR faecal) OR faeces) 
OR foeces) OR faecal) NOT TOPIC:(((((human OR patient) OR homo sapiens) 
OR man) OR woman) OR child*)))

Table S1 Ordinal data scale (EcoReality score) for each experimental condition

Experimental
Condition

Ordinal Data Scale

Taxon Match 1 = Mismatch (different species)
2 = Match (same species)

Donor 
Environment

1 = Lab animal host in sterile lab
2 = Lab animal host in non-sterile lab 
3 = Captive bred wildlife (multiple generations bred in captivity) 
4 = Wildlife brought into captivity (no generations bred in captivity) 
5 = Free-ranging wildlife (capture and release)

Donor 
Physiology

1 = Gene knockout or disease harbouring (non-microbial)
2 = Wildtype non-diseased

Transplanted 
Microbiome

1 = Single strain
2 = Consortium, mixture of select strains

1 



3 = Whole community (no sorting or altering of community sampled for 
transplantation) 

Transplant 
Method

1 = Active (microbiome sample forcefully added to recipient gut e.g., by a 
suppository or oral gavage)
2 = Passive (microbiome sample passively given to recipient e.g., mixed 
into food)

Recipient 
Microbiome

1 = Germ-free
2 = Antibiotic perturbed/pathologic
3 = Whole community (no experimental alteration of community)

Recipient 
Environment

1 = Lab animal host in sterile lab
2 = Lab animal host in non-sterile lab
3 = Captive bred wildlife (multiple generations bred in captivity)
4 = Wildlife brought into captivity (no generations bred in captivity)
5 = Free-ranging wildlife (capture and release)

Recipient 
Physiology

1 = Gene knockout or disease harbouring (non-microbial)
2 = Wildtype or non-diseased

Housing 
Conditions

1 = Housed singly (after microbiome transplantation)
2 = Co-housed (after microbiome transplantation with either other 
replicates in the experiment or with individuals of the same species that 
were not replicates. Co-housing could also have been used as the method of
transplantation)

Figure S1 Cumulative sum of articles from our directed review between 2006 and 2018.

2 



Data accessibility

The data, the above supporting information, and the R script for this manuscript are in a 
repository on GitHub. This repository can be cloned or downloaded straight from Github (https://
github.com/cgreysongaito/Intothewild_Microbiome) or from Zenodo 
(https://doi.org/10.5281/zenodo.2652255).

Folder and file structure of Github repository (Intothewild_Microbiome)

 data
◦ EcoRealTable_2019-10-09_Data.csv

 figs
◦ 2019-10-09 CountAnimals.pdf – Figure 2 in manuscript
◦ 2019-10-09 Eco-realityComparisons.pdf – Figure 3 in manuscript
◦ 2019-10-09 Eco-realityAverageStandardOverTime.pdf – Figure 4 in manuscript
◦ 2019-10-09 CumulativeSumArticles.pdf – Supporting Information Figure 1

 .gitignore – File containing files or folders that git should ignore
 IntotheWild_Microbiome_Greyson-Gaito_etal_2019.R – R script for analysis and figure 

creation
 SupportingInformation_Intothewild_GreysonGaitoetal.pdf – Supporting information 

(search terms, ordinal data scales, figure)
 LICENSE – Mozilla Public License 2.0
 README.md – Important information
 meta_transplant_microbiome.Rproj – R Project to increase ease of use

Instructions for use

 Download the whole repository (either by forking and cloning or by downloading a ZIP 
folder)

 In RStudio, open the project called meta_transplant_microbiome.Rproj and open the file 
Intothewild_Microbiome_Greyson-Gaito_etal_2019.R
◦ If not using RStudio, open the file Intothewild_Microbiome_Greyson-

Gaito_etal_2019.R and edit the path to the data file called EcoRealTable_2019-10-
09_Data.csv to whatever path is required on your computer.

 Run the script in RStudio or however you normally run R scripts
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